Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1252016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37828927

RESUMO

The KIX domain, conserved among various nuclear and co-activator factors, acts as a binding site that interacts with other transcriptional activators and co-activators, playing a crucial role in gene expression regulation. In plants, the KIX domain is involved in plant hormone signaling, stress response regulation, cell cycle control, and differentiation, indicating its potential relevance to crop productivity. This study aims to identify and characterize KIX domains within the soybean (Glycine max L.) genome to predict their potential role in improving crop productivity. The conservation and evolutionary history of the KIX domains were explored in 59 plant species, confirming the presence of the KIX domains in diverse plants. Specifically, 13 KIX domains were identified within the soybean genome and classified into four main groups, namely GmKIX8/9, GmMED15, GmHAC, and GmRECQL, through sequence alignment, structural analysis, and phylogenetic tree construction. Association analysis was performed between KIX domain haplotypes and soybean seed-related agronomic traits using re-sequencing data from a core collection of 422 accessions. The results revealed correlations between SNP variations observed in GmKIX8-3 and GmMED15-4 and soybean seed phenotypic traits. Additionally, transcriptome analysis confirmed significant expression of the KIX domains during the early stages of soybean seed development. This study provides the first characterization of the structural, expression, genomic haplotype, and molecular features of the KIX domain in soybean, offering a foundation for functional analysis of the KIX domain in soybean and other plants.

2.
Plants (Basel) ; 12(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37111888

RESUMO

Soybean (Glycine max L.) is a globally important source of plant proteins, oils, and amino acids for both humans and livestock. Wild soybean (Glycine soja Sieb. and Zucc.), the ancestor of cultivated soybean, could be a useful genetic source for increasing these components in soybean crops. In this study, 96,432 single-nucleotide polymorphisms (SNPs) across 203 wild soybean accessions from the 180K Axiom® Soya SNP array were investigated using an association analysis. Protein and oil content exhibited a highly significant negative correlation, while the 17 amino acids exhibited a highly significant positive correlation with each other. A genome-wide association study (GWAS) was conducted on the protein, oil, and amino acid content using the 203 wild soybean accessions. A total of 44 significant SNPs were associated with protein, oil, and amino acid content. Glyma.11g015500 and Glyma.20g050300, which contained SNPs detected from the GWAS, were selected as novel candidate genes for the protein and oil content, respectively. In addition, Glyma.01g053200 and Glyma.03g239700 were selected as novel candidate genes for nine of the amino acids (Ala, Asp, Glu, Gly, Leu, Lys, Pro, Ser, and Thr). The identification of the SNP markers related to protein, oil, and amino acid content reported in the present study is expected to help improve the quality of selective breeding programs for soybeans.

3.
Plants (Basel) ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986992

RESUMO

The utilization of wild soybean germplasms in breeding programs increases genetic diversity, and they contain the rare alleles of traits of interest. Understanding the genetic diversity of wild germplasms is essential for determining effective strategies that can improve the economic traits of soybeans. Undesirable traits make it challenging to cultivate wild soybeans. This study aimed to construct a core subset of 1467 wild soybean accessions of the total population and analyze their genetic diversity to understand their genetic variations. Genome-wild association studies were conducted to detect the genetic loci underlying the time to flowering for a core subset collection, and they revealed the allelic variation in E genes for predicting maturity using the available resequencing data of wild soybean. Based on principal component and cluster analyses, 408 wild soybean accessions in the core collection covered the total population and were explained by 3 clusters representing the collection regions, namely, Korea, China, and Japan. Most of the wild soybean collections in this study had the E1e2E3 genotype according to association mapping and a resequencing analysis. Korean wild soybean core collections can provide helpful genetic resources to identify new flowering and maturity genes near the E gene loci and genetic materials for developing new cultivars, facilitating the introgression of genes of interest from wild soybean.

4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835486

RESUMO

Soybean seeds consist of approximately 40% protein and 20% oil, making them one of the world's most important cultivated legumes. However, the levels of these compounds are negatively correlated with each other and regulated by quantitative trait loci (QTL) that are controlled by several genes. In this study, a total of 190 F2 and 90 BC1F2 plants derived from a cross of Daepung (Glycine max) with GWS-1887 (G. soja, a source of high protein), were used for the QTL analysis of protein and oil content. In the F2:3 populations, the average protein and oil content was 45.52% and 11.59%, respectively. A QTL associated with protein levels was detected at Gm20_29512680 on chr. 20 with a likelihood of odds (LOD) of 9.57 and an R2 of 17.2%. A QTL associated with oil levels was also detected at Gm15_3621773 on chr. 15 (LOD: 5.80; R2: 12.2%). In the BC1F2:3 populations, the average protein and oil content was 44.25% and 12.14%, respectively. A QTL associated with both protein and oil content was detected at Gm20_27578013 on chr. 20 (LOD: 3.77 and 3.06; R2 15.8% and 10.7%, respectively). The crossover to the protein content of BC1F3:4 population was identified by SNP marker Gm20_32603292. Based on these results, two genes, Glyma.20g088000 (S-adenosyl-l-methionine-dependent methyltransferases) and Glyma.20g088400 (oxidoreductase, 2-oxoglutarate-Fe(II) oxygenase family protein), in which the amino acid sequence had changed and a stop codon was generated due to an InDel in the exon region, were identified.


Assuntos
Glycine max , Locos de Características Quantitativas , Glycine max/genética , Proteínas de Plantas/genética , Sementes/metabolismo , Glicina/metabolismo
5.
Biomed Pharmacother ; 156: 113780, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228379

RESUMO

Influenza viruses cause respiratory infections in humans with high morbidity and mortality rates. Neuraminidase inhibitors such as oseltamivir and peramivir are the most commonly used drugs for influenza virus infections. However, the emergence of resistant viruses necessitates the urgent need to develop next-generation anti-influenza drugs. Soybean (Glycine max L. Merr.) is widely cultivated and used as food worldwide. In addition, soybean has long been used as a nutritional supplement and herbal medicine. However, the potential anti-influenza properties of the soybean cultivar "GL 2626/96″ (SG2626) are yet to be investigated. Herein, we determined whether the ethanolic extract of SG2626 (SG2626E) has anti-viral activity through performing SG2626E pre-, co-, and post-treatment assays, using the influenza green fluorescent protein (GFP)-tagged influenza A/PR/8/34 (A/PR/8/34-GFP) virus. SG2626E showed anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cells. SG2626E imparted a considerable inhibitory effect on influenza A virus (IAV) infection through blocking viral attachment. SG2626E inhibited the activity of viral hemagglutinin, but not viral neuraminidase of the IAV. SG2626E inhibited IAV infection by reducing intracellular calcium levels in infected human lung epithelial A549 cells. Additionally, SG2626E reduced body weight loss, decreased mortality, and increased the survival rate through reducing viral replication in the lungs of IAV-infected mice. Overall, these results suggest that SG2626E inhibits IAV infection and is a potential novel anti-influenza agent.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Camundongos , Animais , Antivirais/farmacologia , Neuraminidase , Glycine max , Influenza Humana/tratamento farmacológico , Replicação Viral , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
6.
Front Plant Sci ; 13: 905842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958208

RESUMO

Ionomics, the study of the composition of mineral nutrients and trace elements in organisms that represent the inorganic component of cells and tissues, has been widely studied to explore to unravel the molecular mechanism regulating the elemental composition of plants. However, the genetic factors of rice subspecies in the interaction between arsenic and functional ions have not yet been explained. Here, the correlation between As and eight essential ions in a rice core collection was analyzed, taking into account growing condition and genetic factors. The results demonstrated that the correlation between As and essential ions was affected by genetic factors and growing condition, but it was confirmed that the genetic factor was slightly larger with the heritability for arsenic content at 53%. In particular, the cluster coefficient of japonica (0.428) was larger than that of indica (0.414) in the co-expression network analysis for 23 arsenic genes, and it was confirmed that the distance between genes involved in As induction and detoxification of japonica was far than that of indica. These findings provide evidence that japonica populations could accumulate more As than indica populations. In addition, the cis-eQTLs of AIR2 (arsenic-induced RING finger protein) were isolated through transcriptome-wide association studies, and it was confirmed that AIR2 expression levels of indica were lower than those of japonica. This was consistent with the functional haplotype results for the genome sequence of AIR2, and finally, eight rice varieties with low AIR2 expression and arsenic content were selected. In addition, As-related QTLs were identified on chromosomes 5 and 6 under flooded and intermittently flooded conditions through genome-scale profiling. Taken together, these results might assist in developing markers and breeding plans to reduce toxic element content and breeding high-quality rice varieties in future.

7.
Genomics ; 114(4): 110432, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35843383

RESUMO

Soyasaponin is a type of glycoside such as steroids, steroidal alkaloids or triterpenes, which enhance the body immunity. In order to efficiently identify genes and markers related to the soyasaponin, we used a 180K Axiom® SoyaSNP array and whole genome resequencing data from the Korean soybean core collection. As a result of conducting GWAS for group A soyasaponin (Aa and Ab derivatives), 16 significant common markers associated with Aa and Ab derivatives were mapped to chromosome 7, and three candidate genes including Glyma.07g254600 were detected. The functional haplotypes for candidate genes showed that Aa and Ab contents were mainly determined by alleles of AX-90322128, the marker of Glyma.07g254600. In addition, 14 novel SNPs variants closely associated with Aa and Ab derivatives were discovered for Glyma.07g254600. Therefore, the results of this study that identified soyasaponin-associated markers and useful genes utilizing various genomic information could provide insight into functional soybean breeding.


Assuntos
Glycine max , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal , Locos de Características Quantitativas , Glycine max/genética
8.
PLoS One ; 16(1): e0245446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444365

RESUMO

The resveratrol-producing rice (Oryza sativa L.) inbred lines, Iksan 515 (I.515) and Iksan 526 (I.526), developed by the expression of the groundnut (Arachis hypogaea) resveratrol synthase 3 (AhRS3) gene in the japonica rice cultivar Dongjin, accumulated both resveratrol and its glucoside, piceid, in seeds. Here, we investigated the effect of the AhRS3 transgene on the expression of endogenous piceid biosynthesis genes (UGTs) in the developing seeds of the resveratrol-producing rice inbred lines. Ultra-performance liquid chromatography (UPLC) analysis revealed that I.526 accumulates significantly higher resveratrol and piceid in seeds than those in I.515 seeds and, in I.526 seeds, the biosynthesis of resveratrol and piceid reached peak levels at 41 days after heading (DAH) and 20 DAH, respectively. Furthermore, RNA-seq analysis showed that the expression patterns of UGT genes differed significantly between the 20 DAH seeds of I.526 and those of Dongjin. Quantitative real-time PCR (RT-qPCR) analyses confirmed the data from RNA-seq analysis in seeds of Dongjin, I.515 and I.526, respectively, at 9 DAH, and in seeds of Dongjin and I.526, respectively, at 20 DAH. A total of 245 UGTs, classified into 31 UGT families, showed differential expression between Dongjin and I.526 seeds at 20 DAH. Of these, 43 UGTs showed more than 2-fold higher expression in I.526 seeds than in Dongjin seeds. In addition, the expression of resveratrol biosynthesis genes (PAL, C4H and 4CL) was also differentially expressed between Dongjin and I.526 developing seeds. Collectively, these data suggest that AhRS3 altered the expression pattern of UGT genes, and PAL, C4H and 4CL in developing rice seeds.


Assuntos
Aciltransferases/metabolismo , Arachis/enzimologia , Glicosiltransferases/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Resveratrol/metabolismo , Difosfato de Uridina/metabolismo , Aciltransferases/genética , Glicosiltransferases/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transgenes
9.
Nat Commun ; 12(1): 97, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397978

RESUMO

Globally, soybean is a major protein and oil crop. Enhancing our understanding of the soybean domestication and improvement process helps boost genomics-assisted breeding efforts. Here we present a genome-wide variation map of 10.6 million single-nucleotide polymorphisms and 1.4 million indels for 781 soybean individuals which includes 418 domesticated (Glycine max), 345 wild (Glycine soja), and 18 natural hybrid (G. max/G. soja) accessions. We describe the enhanced detection of 183 domestication-selective sweeps and the patterns of putative deleterious mutations during domestication and improvement. This predominantly selfing species shows 7.1% reduction of overall deleterious mutations in domesticated soybean relative to wild soybean and a further 1.4% reduction from landrace to improved accessions. The detected domestication-selective sweeps also show reduced levels of deleterious alleles. Importantly, genotype imputation with this resource increases the mapping resolution of genome-wide association studies for seed protein and oil traits in a soybean diversity panel.


Assuntos
Domesticação , Glycine max/genética , Mutação/genética , Cromossomos de Plantas/genética , Bases de Dados Genéticas , Variação Genética , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Haplótipos/genética , Filogenia , Seleção Genética
10.
PLoS One ; 14(10): e0224074, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31639154

RESUMO

A core collection is a subset that represents genetic diversity of the total collection. Soybean (Glycine max (L.) Merr.) is one of major food and feed crops. It is the world's most cultivated annual herbaceous legume. Constructing a core collection for soybean could play a pivotal role in conserving and utilizing its genetic variability for research and breeding programs. To construct and evaluate a Korean soybean core collection, genotypic and phenotypic data as well as population structure, were analyzed. The Korean soybean core collection consisted of 430 accessions selected from 2,872 collections based on Affymetrix Axiom® 180k SoyaSNP array data. The core collection represented 99% of genotypic diversity of the total collection. Analysis of population structure clustered the core collection into five subpopulations. Accessions from South Korea and North Korea were distributed across five subpopulations. Analysis of molecular variance indicated that only 2.01% of genetic variation could be explained by geographic origins while 16.18% of genetic variation was accounted for by subpopulations. Genome-wide association study (GWAS) for days to flowering, flower color, pubescent color, and growth habit confirmed that the core collection had the same genetic diversity for tested traits as the total collection. The Korean soybean core collection was constructed based on genotypic information of the 180k SNP data. Size and phenotypic diversity of the core collection accounted for approximately 14.9% and 18.1% of the total collection, respectively. GWAS of core and total collections successfully confirmed loci associated with tested traits. Consequently, the present study showed that the Korean soybean core collection could provide fundamental and practical material and information for both soybean genetic research and breeding programs.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla/métodos , Glycine max/classificação , Glycine max/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Genótipo , Humanos , Fenótipo , República da Coreia
11.
Theor Appl Genet ; 132(4): 1179-1193, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30588539

RESUMO

KEY MESSAGE: Genotyping data of a comprehensive Korean soybean collection obtained using a large SNP array were used to clarify global distribution patterns of soybean and address the evolutionary history of soybean. Understanding diversity and evolution of a crop is an essential step to implement a strategy to expand its germplasm base for crop improvement research. Accessions intensively collected from Korea, which is a small but central region in the distribution geography of soybean, were genotyped to provide sufficient data to underpin population genetic questions. After removing natural hybrids and duplicated or redundant accessions, we obtained a non-redundant set comprising 1957 domesticated and 1079 wild accessions to perform population structure analyses. Our analysis demonstrates that while wild soybean germplasm will require additional sampling from diverse indigenous areas to expand the germplasm base, the current domesticated soybean germplasm is saturated in terms of genetic diversity. We then showed that our genome-wide polymorphism map enabled us to detect genetic loci underlying flower color, seed-coat color, and domestication syndrome. A representative soybean set consisting of 194 accessions was divided into one domesticated subpopulation and four wild subpopulations that could be traced back to their geographic collection areas. Population genomics analyses suggested that the monophyletic group of domesticated soybeans was likely originated at a Japanese region. The results were further substantiated by a phylogenetic tree constructed from domestication-associated single nucleotide polymorphisms identified in this study.


Assuntos
Domesticação , Variação Genética , Glycine max/genética , Ecótipo , Genética Populacional , Estudo de Associação Genômica Ampla , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética
12.
Food Res Int ; 100(Pt 2): 166-174, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28888437

RESUMO

Wild soybeans are considered a potential resource for soybean domestication and an important source of genetic diversity for soybean crop improvement. Understanding metabolite-caused bioactivity differences between cultivated and wild soybeans is essential for designing a soybean with enhanced nutritional traits. In this study, the non-targeted metabolic profiling of 26 soybean varieties, 15 wild black soybeans (WBS) and 11 cultivated black soybeans (CBS), using liquid chromatography-mass spectrometry (LC-MS) in combination with multivariate analysis revealed significant differences in 25 differential metabolites. Among these, the soyasaponins Ab and Bb were found to be characteristic metabolites expressed more substantially in CBS than in WBS. Three different antioxidant assays and correlation analysis identified major and minor antioxidants that contributed to WBS having an antioxidant activity 4- to 8-fold stronger than that of CBS. Epicatechin, procyanidin B2, and cyanidin-3-O-glucoside were identified by both association analysis and the online LC-ABTS radical scavenging assay as being major antioxidants.


Assuntos
Antioxidantes/análise , Antioxidantes/metabolismo , Glycine max/metabolismo , Metaboloma , Antocianinas/metabolismo , Antioxidantes/farmacologia , Biflavonoides/metabolismo , Catequina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Fabaceae , Glucosídeos/metabolismo , Células Hep G2/efeitos dos fármacos , Humanos , Espectrometria de Massas , Metabolômica/métodos , Análise Multivariada , Proantocianidinas/metabolismo , Metabolismo Secundário , Glycine max/classificação
13.
Int J Mol Sci ; 16(11): 27302-12, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26580605

RESUMO

AtTDX, a thioredoxin-like plant-specific protein present in Arabidopsis is a thermo-stable and multi-functional enzyme. This enzyme is known to act as a thioredoxin and as a molecular chaperone depending upon its oligomeric status. The present study examines the effects of γ-irradiation on the structural and functional changes of AtTDX. Holdase chaperone activity of AtTDX was increased and reached a maximum at 10 kGy of γ-irradiation and declined subsequently in a dose-dependent manner, together with no effect on foldase chaperone activity. However, thioredoxin activity decreased gradually with increasing irradiation. Electrophoresis and size exclusion chromatography analysis showed that AtTDX had a tendency to form high molecular weight (HMW) complexes after γ-irradiation and γ-ray-induced HMW complexes were tightly associated with a holdase chaperone activity. The hydrophobicity of AtTDX increased with an increase in irradiation dose till 20 kGy and thereafter decreased further. Analysis of the secondary structures of AtTDX using far UV-circular dichroism spectra revealed that the irradiation remarkably increased the exposure of ß-sheets and random coils with a dramatic decrease in α-helices and turn elements in a dose-dependent manner. The data of the present study suggest that γ-irradiation may be a useful tool for increasing holdase chaperone activity without adversely affecting foldase chaperone activity of thioredoxin-like proteins.


Assuntos
Raios gama , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica/efeitos da radiação , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Ativação Enzimática , Interações Hidrofóbicas e Hidrofílicas/efeitos da radiação , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
14.
Methods Mol Biol ; 1057: 101-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23918423

RESUMO

To mutagenize rice genomes, a two-element system is utilized. This system comprises an immobile Ac element driven by the CaMV 35S promoter, and a gene trap Ds carrying a partial intron with alternative splice acceptors fused to the GUS coding region. Rapid, large-scale generation of a Ds transposant population was achieved using a plant regeneration procedure involving the tissue culture of seed-derived calli carrying Ac and Ds elements. During tissue cultures, Ds mobility accompanies changes in methylation patterns of a terminal region of Ds, where over 70% of plants contained independent Ds insertions. In the transposon population, around 12% of plants expressed GUS at the early seedling stage. A flanking-sequence-tag (FST) database has been established by cloning over 19,968 Ds insertion sites and the Ds map shows relatively uniform distribution across the rice chromosomes.


Assuntos
Elementos de DNA Transponíveis/genética , Engenharia Genética/métodos , Mutagênese , Oryza/crescimento & desenvolvimento , Oryza/genética , Regeneração , Sequência de Bases , DNA de Plantas/genética , Genômica , Plantas Geneticamente Modificadas , Fatores de Tempo , Técnicas de Cultura de Tecidos
15.
Theor Appl Genet ; 125(5): 1033-46, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751999

RESUMO

Rice stripe disease, caused by rice stripe virus (RSV) is a serious constraint to rice production in subtropical regions of East Asia. We performed fine mapping of a RSV resistance QTL on chromosome 11, qSTV11 ( SG ), using near-isogenic lines (NILs, BC(6)F(4)) derived from a cross between the highly resistant variety, Shingwang, and the highly susceptible variety, Ilpum, using 11 insertion and deletion (InDel) markers. qSTV11 ( SG ) was localized to a 150-kb region between InDel 11 (17.86 Mbp) and InDel 5 (18.01 Mbp). Among the two markers in this region, InDel 7 is diagnostic of RSV resistance in 55 Korean japonica and indica rice varieties. InDel 7 could also distinguish the allele type of Nagdong, Shingwang, Mudgo, and Pe-bi-hun from Zenith harboring the Stv-b ( i ) allele. As a result, qSTV11 ( SG ) is likely to be the Stv-b ( i ) allele. There were 21 genes in the 150-kb region harboring the qSTV11 ( SG ) locus. Three of these genes, LOC_Os11g31430, LOC_Os11g31450, and LOC_Os11g31470, were exclusively expressed in the susceptible variety. These expression profiles were consistent with the quantitative nature along with incomplete dominance of RSV resistance. Sequencing of these genes showed that there were several amino acid substitutions between susceptible and resistant varieties. Putative functions of these candidate genes for qSTV11 (SG) are discussed.


Assuntos
Mapeamento Cromossômico , Genes de Plantas/genética , Imunidade Inata/genética , Oryza/genética , Oryza/virologia , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Tenuivirus/patogenicidade , Cromossomos de Plantas/genética , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Genótipo , Oryza/imunologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase , Tenuivirus/genética , Tenuivirus/imunologia
16.
Int J Syst Evol Microbiol ; 59(Pt 9): 2148-52, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19605703

RESUMO

An aerobic, pale-orange-pigmented, Gram-stain-negative bacterium, designated strain EM39T, was isolated from seawater from the eastern coast of Jeju Island, Korea, and its taxonomic status was established using a polyphasic approach. Comparative 16S rRNA gene sequence studies revealed that strain EM39T formed a distinct lineage within the family Flavobacteriaceae and could be distinguished from strains of members of the related genera Gaetbulibacter, Mariniflexile and Tamlana by 16S rRNA gene sequence analysis (similarity values between strain EM39T and related strains were all less than 93.8%). Cells of strain EM39T were non-gliding, catalase- and oxidase-positive rods that were devoid of flexirubin pigments. Growth was observed at 15-35 degrees C (optimum, 25-30 degrees C) and pH 6.5-9.0 (optimum, pH 7.0-8.5). The genomic DNA G+C content was 34.6 mol% and the major respiratory quinone was MK-6. The predominant cellular fatty acids were iso-C15:0, iso-C15:1 G and iso-C17:0 3-OH. On the basis of phenotypic and genotypic data, strain EM39T represents a novel species in a new genus in the family Flavobacteriaceae, for which the name Jejuia pallidilutea gen. nov., sp. nov. is proposed. The type strain is EM39T (=KCTC 22298T=DSM 21165T).


Assuntos
Flavobacteriaceae/classificação , Flavobacteriaceae/isolamento & purificação , Água do Mar/microbiologia , Aerobiose , Composição de Bases , Catalase/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Flavobacteriaceae/genética , Flavobacteriaceae/fisiologia , Concentração de Íons de Hidrogênio , Coreia (Geográfico) , Locomoção , Dados de Sequência Molecular , Oxirredutases/metabolismo , Filogenia , Pigmentos Biológicos/biossíntese , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
17.
Int J Syst Evol Microbiol ; 59(Pt 6): 1451-4, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19502333

RESUMO

A Gram-negative-staining, non-spore-forming bacterium devoid of flagella, designated strain B9(T), was isolated from rice paddy soil associated with the roots of Oryza sativa collected from Jinju, South Korea. Cells were straight rods, were catalase- and oxidase-positive and were able to hydrolyse pectin, xylan and laminarin. Growth of strain B9(T) was observed between 15 and 35 degrees C (optimum 25-30 degrees C) and between pH 5.0 and 8.0 (optimum pH 6.5-7.5). Strain B9(T) contained menaquinone-7 (MK-7) as a major isoprenoid quinone and summed feature 3 (C(16 : 1)omega7c and/or iso-C(15 : 0) 2-OH), iso-C(15 : 0) and C(16 : 0) as major fatty acids. The G+C content of the genomic DNA was 44.4 mol%. Comparative 16S rRNA gene sequence analysis showed that strain B9(T) belonged to the genus Mucilaginibacter, a member of the family Sphingobacteriaceae, and was most closely related to Mucilaginibacter kameinonensis SCK(T) (95.9 % sequence similarity). On the basis of chemotaxonomic data and molecular properties, strain B9(T) represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter oryzae sp. nov. is proposed. The type strain is B9(T) (=KACC 12816(T) =DSM 19975(T)).


Assuntos
Bacteroidetes/classificação , Oryza/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/fisiologia , Composição de Bases , DNA Bacteriano/análise , DNA Ribossômico/análise , Ácidos Graxos/análise , Coreia (Geográfico) , Dados de Sequência Molecular , Fenótipo , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
18.
Plant Physiol ; 150(2): 552-61, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19339505

RESUMO

A large number of thioredoxins (Trxs), small redox proteins, have been identified from all living organisms. However, many of the physiological roles played by these proteins remain to be elucidated. We isolated a high M(r) (HMW) form of h-type Trx from the heat-treated cytosolic extracts of Arabidopsis (Arabidopsis thaliana) suspension cells and designated it as AtTrx-h3. Using bacterially expressed recombinant AtTrx-h3, we find that it forms various protein structures ranging from low and oligomeric protein species to HMW complexes. And the AtTrx-h3 performs dual functions, acting as a disulfide reductase and as a molecular chaperone, which are closely associated with its molecular structures. The disulfide reductase function is observed predominantly in the low M(r) forms, whereas the chaperone function predominates in the HMW complexes. The multimeric structures of AtTrx-h3 are regulated not only by heat shock but also by redox status. Two active cysteine residues in AtTrx-h3 are required for disulfide reductase activity, but not for chaperone function. AtTrx-h3 confers enhanced heat-shock tolerance in Arabidopsis, primarily through its chaperone function.


Assuntos
Arabidopsis/enzimologia , Resposta ao Choque Térmico , Tiorredoxina h/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Cisteína/metabolismo , Modelos Biológicos , Chaperonas Moleculares , Peso Molecular , Oxirredução , Fotossíntese , Plantas Geneticamente Modificadas , Transporte Proteico , Frações Subcelulares/metabolismo , Tiorredoxina h/química , Tiorredoxina Dissulfeto Redutase/química
19.
Proc Natl Acad Sci U S A ; 106(14): 5978-83, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19293385

RESUMO

We found that Arabidopsis AtTDX, a heat-stable and plant-specific thioredoxin (Trx)-like protein, exhibits multiple functions, acting as a disulfide reductase, foldase chaperone, and holdase chaperone. The activity of AtTDX, which contains 3 tetratricopeptide repeat (TPR) domains and a Trx motif, depends on its oligomeric status. The disulfide reductase and foldase chaperone functions predominate when AtTDX occurs in the low molecular weight (LMW) form, whereas the holdase chaperone function predominates in the high molecular weight (HMW) complexes. Because deletion of the TPR domains results in a significant enhancement of AtTDX disulfide reductase activity and complete loss of the holdase chaperone function, our data suggest that the TPR domains of AtTDX block the active site of Trx and play a critical role in promoting the holdase chaperone function. The oligomerization status of AtTDX is reversibly regulated by heat shock, which causes a transition from LMW to HMW complexes with concomitant functional switching from a disulfide reductase and foldase chaperone to a holdase chaperone. Overexpression of AtTDX in Arabidopsis conferred enhanced heat shock resistance to plants, primarily via its holdase chaperone activity.


Assuntos
Proteínas de Arabidopsis/fisiologia , Resposta ao Choque Térmico , Tiorredoxinas/fisiologia , Dimerização , Resposta ao Choque Térmico/genética , Chaperonas Moleculares , Peso Molecular , NADH NADPH Oxirredutases
20.
Mol Genet Genomics ; 280(2): 163-72, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18553105

RESUMO

During brown planthopper (BPH) feeding on rice plants, we employed a modified representational difference analysis (RDA) method to detect rare transcripts among those differentially expressed in SNBC61, a BPH resistant near-isogenic line (NIL) carrying the Bph1 resistance gene. This identified 3 RDA clones: OsBphi237, OsBphi252 and OsBphi262. DNA gel-blot analysis revealed that the loci of the RDA clones in SNBC61 corresponded to the alleles of the BPH resistant donor Samgangbyeo. Expression analysis indicated that the RDA genes were up-regulated in SNBC61 during BPH feeding. Interestingly, analysis of 64 SNBC NILs, derived from backcrosses of Samgangbyeo with a BPH susceptible Nagdongbyeo, using a cleaved amplified polymorphic sequence (CAPS) marker indicated that OsBphi252, which encodes a putative lipoxygenase (LOX), co-segregates with BPH resistance. Our results suggest that OsBphi252 is tightly linked to Bph1, and may be useful in marker-assisted selection (MAS) for resistance to BPH.


Assuntos
Genes de Plantas , Hemípteros/patogenicidade , Oryza/genética , Oryza/parasitologia , Animais , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...